4. Vasicek Model/Process — Understanding Quantitative Finance (2024)

The purpose of this notebook is to provide an illustration of the Vasicek Model/Processs and some of its main properties.

Before diving into the theory, let’s start by loading the libraries

together with the style sheet Quant-Pastel Light.

These tools will help us to make insightful visualisations.

import matplotlib.pyplot as pltmystyle = "https://raw.githubusercontent.com/quantgirluk/matplotlib-stylesheets/main/quant-pastel-light.mplstyle"plt.style.use(mystyle)plt.rcParams["figure.figsize"] = (12, 6)
from aleatory.processes import Vasicekprocess = Vasicek(theta=0.5, mu=-10.0, sigma=2.0, initial=1.0, T=20.0)process.draw(n=200, N=200, envelope=False, title='Vasicek Process')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (1)

4.1. Definition#

The Vasicek model specifies that the instantaneous interest rate is defined by a stochastic process which can be defined by the following Stochastic Differential Equation (SDE)

(4.1)#\[\begin{equation}dX_t = \theta (\mu - X_t) dt + \sigma dW_t, \quad t >0,\end{equation}\]

with initial condition \(X_0 =x_0\in\mathbb{R}\), and where \(W_t\) is a standard Brownian motion, and the three parameters are constants:

  • \(\theta>0\) : speed or mean reversion coefficient

  • \(\mu \in \mathbb{R}\) : long term mean

  • \(\sigma>0\) : volatility

In order to find the solution to this SDE, let us set the function \(f(t,x) = x e^{\theta t}\). Then, Ito’s formula implies

\[\begin{align*}X_te^{\theta t} &= x_0 +\int_0^t X_s \theta e^{\theta s}ds + \int_0^t e^{\theta s}dX_s \\& = x_0 + \int_0^t \left[ \theta X_s e^{\theta s} +\theta e^{\theta s}(\mu - X_s)\right] ds + \int_0^t e^{\theta s}\sigma dW_s\\& = x_0 + \int_0^t \left[ \theta e^{\theta s}\mu\right] ds + \int_0^t e^{\theta s}\sigma dW_s\\& = x_0 + \mu(e^{\theta t} - 1) + \int_0^t e^{\theta s}\sigma dW_s.\end{align*}\]

Thus

(4.2)#\[\begin{equation}X_t = x_0e^{-\theta t} + \mu(1- e^{-\theta t}) + \sigma \int_0^t e^{-\theta (t-s)}dW_s.\end{equation}\]

Note

📝 The last expression implies that the process can take positive and negative values.

4.2. Marginal Distributions#

Equation (4.2) implies that for each \(t>0\), the variable \(X_t\) follows a normal distribution –since it can be expressed as the sum of a deterministic part and the integral of a deterministic function with respect to the Brownian motion.

Moreover, using the properties of the Brownian Motion we can obtain the following expressions for its expectation and variance.

4.2.1. Expectation and Variance#

For each \(t>0\), the conditional marginal \(X_t|X_0\) from a Vacisek process satisfies

\[\begin{equation*}\mathbf{E} [X_t ] = \mathbb{E}[X_t|X_0] = x_0e^{-\theta t} + \mu(1- e^{-\theta t}),\end{equation*}\]

and

\[\begin{equation*}\mathbf{Var} [X_t ] = \mathbb{Var} [X_t |X_0] = \frac{\sigma^2}{ 2\theta} (1- e^{-2\theta t}).\end{equation*}\]

To obtain the expectation we simply use the linearity of the expectation and the fact that the Ito integral in equation (2) is a martingale. Similarly, for the variance we use basic properties of the variance and the isometry property of the Ito integral.

Hence, for each \(t>0\), we have

\[\begin{equation*}X_t \sim \mathcal{N}\left(x_0e^{-\theta t} + \mu(1- e^{-\theta t}), \frac{\sigma}{ \sqrt{2\theta}} \sqrt{ (1- e^{-2\theta t})} \right).\end{equation*}\]

4.2.2. Covariance#

In addition, we can verify that

\[Cov(X_t, X_s ) = \frac{\sigma^2 }{ 2\theta}e^{-\theta (t+s)} (e^{2\theta \min\{t,s\}}-1),\]

for any give \(t,s >0.\)

4.2.3. Python Implementation#

So, for given \(x_0, \theta>0, \mu, \sigma>0\) and \(t,s>0\) we can implement the above formulas for the expectation, variance, and covariance as follows.

import numpy as npx0 = 2.0theta = 1.0mu = 3.0sigma = 0.5t= 10s = 5exp = x0*np.exp(-1.0*theta*t) + mu*(1.0 - np.exp(-1.0*theta*t))var = sigma**2/(2.0*theta)*(1 - np.exp(-2.0*theta*t)) cov = sigma**2/(2.0*theta)*np.exp(-1.0*(t+s))*(np.exp(2.0*theta*(np.min([t,s]))) - 1.0) print(f'For x_0={x0}' , f'theta={theta}',f'mu={mu}', f'sigma=.{sigma}', f't={t}', f's={s}', sep=", ")print(f'E[X_t]= {exp: .6f}')print(f'Var[X_t]={var :.2f}')print(f'Cov[X_t, X_s]={cov :.6f}')
For x_0=2.0, theta=1.0, mu=3.0, sigma=.0.5, t=10, s=5E[X_t]= 2.999955Var[X_t]=0.12Cov[X_t, X_s]=0.000842

4.2.4. Marginal Distributions in Python#

Knowing the distribution –with its corresponding parameters– of the marginal distributions allows us to reproduce them with Python.

One way to do this is by using the object norm from the library scipy.stats. The next cell shows how to create \(X_1\) using this method.

from scipy.stats import normimport numpy as np x0 = 2.0 theta = 1.0mu = 3.0sigma = 0.5t =1.0 X_1 = norm(loc=(x0*np.exp(-1.0*theta*t) + mu*(1.0 - np.exp(-1.0*theta*t))), scale= np.sqrt( (sigma**2/(2.0*theta)*(1 - np.exp(-2.0*theta*t)) )) )# Now we can calculate the mean and the variance of X_1print(X_1.mean()) print(X_1.var())
2.63212055882855770.1080830895954234

Another way to do this is by creating an object Vasicek from aleatory.processes and calling the method get_marginal on it. The next cell shows how to create the marginal \(X_1\) using this method.

from aleatory.processes import Vasicekx0 = 2.0 theta = 1.0mu = 3.0sigma = 0.5t =1.0 process = Vasicek(theta=theta, mu=mu, sigma=sigma, initial=x0)X_1 = process.get_marginal(t=1)# Now we can calculate the mean and the variance of X_1print(X_1.mean())print(X_1.var())
2.63212055882855770.1080830895954234

Hereafter, we will use the latter method to create marginal distributions from the Vacisek process.

4.2.5. Probability Density Functions#

The probability density function (pdf) of the marginal distribution \(X_t\) is given by the following expression

\[\begin{equation*}f(x, t; \theta, \mu, \sigma, x_0) = \dfrac{1}{ \frac{\sigma}{ \sqrt{2\theta}} \sqrt{ (1- e^{-2\theta t})} \sqrt{2 \pi }}\exp\left\{ -\dfrac{1}{2} \left(\dfrac{x- [x_0e^{-\theta t} + \mu(1- e^{-\theta t})] }{ \frac{\sigma}{ \sqrt{2\theta}} \sqrt{ (1- e^{-2\theta t})}}\right)^2 \right\}, \qquad \forall x\in\mathbb{R}, t>0.\end{equation*}\]

Let’s take a look at the density function of \(X_1\) for different values of \(\theta\), \(\mu\), and \(\sigma\).

First we consider the processVasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0) and plot the marginal density of \(X_1\).Note that the mean is still far from the long term mean \(\mu=10\).

process = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0)X_1 = process.get_marginal(t=1)x = np.linspace(X_1.ppf(0.001), X_1.ppf(0.999), 100)plt.plot(x, X_1.pdf(x), '-', lw=1.5, alpha=0.75, label=f'$t$={1:.2f}')plt.axvline(x = X_1.mean(), color='red', label='$E[X_1]$')plt.title(f'$X_1$ pdf')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (2)

Next we vary the value of the parameter \(\theta\) (the speed of reversion) Vasicek(theta=theta, mu=10.0, sigma=0.5, initial=1.0) and again plot the densities of \(X_1\). Note how the value of \(\theta\) impacts both the mean and the variance of the density.

As \(\theta\) increases:

  • The expectation goes from being close to the initial point \(x_0 = 1.0\) to being close to the long term mean \(\mu=10.0\).

  • The variance decreases and the distribution becomes more concentrated around the mean.

fig, axs = plt.subplots(1, 3, figsize=(18, 6))theta_values = ( [0.1, 0.2, 0.3], [1, 2, 3], [10, 20, 30])for (thetas, ax) in zip(theta_values, axs): for theta in thetas: process = Vasicek(theta=theta, mu=10.0, sigma=0.5, initial=1.0) X_t = process.get_marginal(t=1.0) x = np.linspace(0, X_t.ppf(0.999), 100) ax.plot(x, X_t.pdf(x), '-', lw=1.5, alpha=0.75, label=f'$\\theta$={theta:.2f}') ax.legend()fig.suptitle(r'$X_1$ pdf from a Vasicek process with $\mu = 10.0, \sigma=0.5$ and $x_0$=1.0')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (3)

Next we vary the value of the parameter \(\mu\) (the long term mean) in Vasicek(theta=1.0, mu=mu, sigma=0.5, initial=1.0) and again plot the densities corresponding to \(X_1\). Note how the value of \(\mu\) impacts only the mean of the density. We can see that the mean of the density follows the direction of the parameter \(\mu\) which is expected since it will converge to it when \(t\) goes to infinity.

fig, axs = plt.subplots(1, 2, figsize=(18, 6))mu_values = ([ 0, -1, -2,], [0, 1, 2])for (mus, ax) in zip(mu_values, axs): for mu in mus: process = Vasicek(theta=1.0, mu=mu, sigma=0.5, initial=1.0) X_t = process.get_marginal(t=1.0) x = np.linspace(X_t.ppf(0.001), X_t.ppf(0.999), 100) ax.plot(x, X_t.pdf(x), '-', lw=1.5, alpha=0.75, label=f'$\mu$={mu:.2f}') ax.legend()fig.suptitle(r'$X_1$ pdf from a Vasicek process with $\theta = 1.0, \sigma=0.5$ and $x_0$=1.0')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (4)

Next we vary the value of the parameter \(\sigma\) (the volatility) in Vasicek(theta=1.0, mu=10.0, sigma=sigma, initial=1.0) and again plot the densities of \(X_1\). Note that the value of \(\sigma\) impacts only the variance of the density while the mean remains constant. As \(\sigma\) increases the variance of \(X_1\) increases and the distribution becomes wider. We can see this by looking at the range in the x-axis of the plots.

fig, axs = plt.subplots(1, 3, figsize=(18, 6))sigma_values = ([0.01, 0.02, 0.05], [0.1, 0.2, 0.5], [1, 2, 3])for (sigmas, ax) in zip(sigma_values, axs): for sigma in sigmas: process = Vasicek(theta=1.0, mu=10.0, sigma=sigma, initial=1.0) X_t = process.get_marginal(t=1.0) x = np.linspace(X_t.ppf(0.001), X_t.ppf(0.999), 100) ax.plot(x, X_t.pdf(x), '-', lw=1.5, alpha=0.75, label=f'$\sigma$={sigma:.2f}') ax.legend()fig.suptitle(r'$X_1$ pdf from a Vasicek process with $\theta = 1.0, \mu=10.0$ and $x_0$=1.0')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (5)

Finally, we will keep all parameters fixed in Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0) and now plot the densities of \(X_t\) for several values of \(t\). Note how varying \(t\) would impact both the mean and the variance of the density.

As \(t\) increases:

  • The expectation goes from being close to the initial point \(x_0 = 1.0\) to being close to the long term mean \(\mu=10.0\).

  • The variance also increases but note that it seems to stabilise. We can see this especially in the third graph.

process = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0)fig, axs = plt.subplots(1, 3, figsize=(18, 6))t_values = ([0.1, 0.2, 0.3, 0.5], [1, 2, 3], [10, 20])for (ts, ax) in zip(t_values, axs): for t in ts: X_t = process.get_marginal(t=t) x = np.linspace(X_t.ppf(0.001), X_t.ppf(0.995), 100) ax.plot(x, X_t.pdf(x), '-', lw=1.5, alpha=0.75, label=f'$t$={t:.2f}') ax.legend()fig.suptitle(r'$X_t$ pdf from a Vasicek process with $\theta = 1.0, \mu=10.0, \sigma=0.5$, and $x_0$=1.0')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (6)

4.2.6. Sampling#

Now, let’s see how to get a random sample from \(X_t\) for any \(t>0\).

The next cell shows how to get a sample of size 5 from \(X_1\).

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0)X_1= process.get_marginal(t=1.0)X_1.rvs(size=5)
array([6.92652129, 6.39524409, 6.73077842, 6.65327447, 7.12773049])

Similarly, we can get a sample from \(X_{10}\)

X_10 = process.get_marginal(t=10)X_10.rvs(size=5)
array([10.06590198, 9.56805405, 10.15120991, 9.44203325, 10.15908188])

4.3. Simulation#

In order to simulate paths from a stochastic process, we need to set a discrete partition over an interval for the simulation to take place.

For simplicity, we are going to consider an equidistant partition of size \(n\) over \([0,T]\), i.e.:

\[\begin{equation*}t_i = \frac{i}{n-1} T \qquad \hbox{for } i = 0, \cdots, n-1.\end{equation*}\]

Then, the goal is to simulate a path of the form \(\{ X_{t_i} , i=0,\cdots, n-1\}\). We will use Euler-Maruyama approximation.

4.3.1. Simulating and Visualising Paths#

We can simulate several paths from a Vasicek process and visualise them we can use the method plot from the aleatory library.

Let’s simulate 10 paths over the interval \([0,1]\) using a partition of 100 points.

Tip

Remember that the number of points in the partition is defined by the parameter \(n\), while the number of paths is determined by \(N\).

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=2.0)fig = process.plot(n=100, N=10, title='10 paths of the Vasicek Process')

4. Vasicek Model/Process — Understanding Quantitative Finance (7)

Note

In all plots we are using a linear interpolation to draw the lines between the simulated points.

Similarly, we can define the process over the interval \([0, 5]\) and simulate 50 paths with a partition of size 100.

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0, T=5.0)fig = process.plot(n=200, N=100, title='100 paths of the Vasicek Process')

4. Vasicek Model/Process — Understanding Quantitative Finance (8)

4.4. Long Time Behaviour#

4.4.1. Expectation and Variance#

Note that when \(t\) goes to infinity, we have

\[\begin{equation*}\lim_{t\rightarrow\infty} \mathbf{E} [X_t ] = \lim_{t\rightarrow\infty} \left[ x_0e^{-\theta t} + \mu(1- e^{-\theta t}) \right] = \mu.\end{equation*}\]

and

\[\begin{equation*}\lim_{t\rightarrow\infty}\mathbf{Var} [X_t ] = \lim_{t\rightarrow\infty} \frac{\sigma^2}{ 2\theta} (1- e^{-2\theta t}) = \frac{\sigma^2}{ 2\theta}.\end{equation*}\]

Next, we illustrate the convergence of both the mean and the variance of \(X_t\) as \(t\) grows. Note that the speed of convergence is determined by \(\theta\).

def draw_mean_variance(x0, theta, mu, sigma, T=100): process = Vasicek(theta=theta, mu=mu, sigma=sigma, initial=x0, T=T) ts = np.linspace(0, T, T) means = process.marginal_expectation(ts) variances = process.marginal_variance(ts) fig, (ax1, ax2,) = plt.subplots(1, 2, figsize=(9, 4)) ax1.plot(ts, means, lw=1.5, color='black', label='$E[X_t]$') ax1.set_xlabel('t') ax1.legend() ax2.plot(ts, variances, lw=1.5, color='red', label='$Var[X_t]$') ax2.set_xlabel('t') ax2.legend() fig.suptitle( 'Expectation and Variance of $X_t$ with ' f'$x_0$={x0:.2f}, $\\theta$={theta:.2f}, $\mu$={mu:.2f}, $\sigma$={sigma:.2f}', size=12) plt.show()
draw_mean_variance(theta=1.0, mu=10.0, sigma=0.5, x0=1.0, T=10)

4. Vasicek Model/Process — Understanding Quantitative Finance (9)

draw_mean_variance(theta=0.1, mu=10.0, sigma=0.5, x0=-2.0, T=10)

4. Vasicek Model/Process — Understanding Quantitative Finance (10)

4.4.2. Marginal#

The marginal distribution \(X_t\) given an initial point \(x_0\), converges to

\[\begin{equation*}X_{\infty} \sim \mathcal{N} \left(\mu , \frac{\sigma}{ \sqrt{2\theta} }\right),\end{equation*}\]

as \(t\) goes to infinity. Let’s make some simulations to illustrate this convergence.

First, we simulate 1000 paths from Vasicek(theta=1.0, mu=10.0, sigma=2.0, initial=1.0, T=1.0) over the interval \([0,1]\). Here, we can see the the distribution of \(X_1\) has mean around 6.0. This means that the process has not reached convergence, since we have not arrived to the long term mean \(\mu=10.0\).

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=2.0, initial=1.0, T=1.0)fig = process.draw(n=100, N=100, title='Vasicek Process before reaching convergence to the asymptotic distribution')

4. Vasicek Model/Process — Understanding Quantitative Finance (11)

Now, we simulate 1000 paths from the same process Vasicek(theta=1.0, mu=10.0, sigma=2.0, initial=1.0, T=15) but this time over the interval \([0,15]\). In the picture, we can see the the distribution of \(X_{15}\) has mean equal to the long term mean \(\mu=10\). The process has reached convergence!

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=2.0, initial=1.0, T=15.0)fig = process.draw(n=100, N=100, title='Vasicek Process reaching convergence to the asymptotic distribution')

4. Vasicek Model/Process — Understanding Quantitative Finance (12)

4.4.2.1. The parameter \(\theta\) determines the Speed of Convergence#

# from aleatory.processes import Vasicekprocess = Vasicek(theta=5.0, mu=10.0, sigma=2.0, initial=1.0, T=1.0)fig = process.draw(n=100, N=100, title='Vasicek Process quickly reaching convergence to the asymptotic distribution')

4. Vasicek Model/Process — Understanding Quantitative Finance (13)

process = Vasicek(theta=0.1, mu=10.0, sigma=2.0, initial=1.0, T=50.0)process.draw(n=100, N=100, title='Vasicek Process slowly reaching convergence to the asymptotic distribution')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (14)

4.4.2.2. The parameter \(\sigma\) determines the volatility in the simulation#

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=0.5, initial=1.0, T=1.0)fig = process.draw(n=100, N=100, title='Vasicek Process with low volatility')

4. Vasicek Model/Process — Understanding Quantitative Finance (15)

# from aleatory.processes import Vasicekprocess = Vasicek(theta=1.0, mu=10.0, sigma=5.0, initial=1.0, T=1.0)fig =process.draw(n=100, N=100, title='Vasicek Process with high volatility')

4. Vasicek Model/Process — Understanding Quantitative Finance (16)

4.5. Visualisation#

To finish this note, let’s take a final look at a some simulations from the Vasicek process.

# from aleatory.processes import Vasicekprocess = Vasicek(theta=0.5, mu=10.0, sigma=2.0, initial=-1.0, T=20.0)fig = process.draw(n=200, N=200, envelope=True)

4. Vasicek Model/Process — Understanding Quantitative Finance (17)

# from aleatory.processes import Vasicekprocess = Vasicek(theta=0.5, mu=-10.0, sigma=2.0, initial=1.0, T=20.0)fig = process.draw(n=200, N=200, envelope=True, colormap="cool", title='Vasicek Process')

4. Vasicek Model/Process — Understanding Quantitative Finance (18)

# from aleatory.processes import Vasicek# import matplotlib.pyplot as plt# import numpy as npprocess = Vasicek(theta=1.0, mu=-10.0, sigma=np.sqrt(2), initial=0.0, T=12.0)path = process.simulate(n=1000, N=1)ts = process.timesexp = process.marginal_expectation(ts)plt.plot(ts, path[0], label= f'$x_0$ = 0, $\mu$ = -10')plt.plot(ts, exp, color='grey',linewidth=2)for x0 in [-10.0, 0.0, 10.0]: process = Vasicek(theta=1.0, mu=0.0, sigma=np.sqrt(2), initial=x0, T=12.0) path = process.simulate(n=1000, N=1) plt.plot(ts, path[0], label= f'$x_0$ = {x0:.0f}, $\mu$ = 0') exp = process.marginal_expectation(ts) plt.plot(ts, exp, color='grey', linewidth=2)plt.plot(ts, exp, color='grey', label=f'$E[X_t]$')plt.legend()plt.title('Four Paths from the Vasicek Model\n $dX_t = \\theta(\mu - X_t) dt + \sigma dW_t$\n with $\\theta = 1, \sigma = \sqrt{2}$')plt.show()

4. Vasicek Model/Process — Understanding Quantitative Finance (19)

4.6. References and Further Reading#

  • Damiano Brigo, Fabio Mercurio (2001). Interest Rate Models – Theory and Practice with Smile, Inflation and Credit

  • Vasicek, O. (1977). “An equilibrium characterization of the term structure”. Journal of Financial Economics.

4. Vasicek Model/Process — Understanding Quantitative Finance (2024)

References

Top Articles
„The Boogeyman“-Kritik: Nicht alle Horror-Fans kommen beim neuen Stephen-King-Fan auf ihre Kosten
Boogeyman 3 | Rotten Tomatoes
Hotels Near Dean Mcgee Eye Institute
Csl Plasma Birthday Bonus
Unholy Infusion Solo
Famed Radio Host Glass Crossword Clue
Dancing Celebration Gif
So Il Craigslist
Taiga Denizen Crossword
The Times-News from Twin Falls, Idaho
Mindcontrol By Source_Girl
Www Ifwe69
Michigan Hunting Land For Lease'' - Craigslist
Cooktopcove Com
Hood County Buy Sell And Trade
Delectable Birthday Dyes
Tampa Fl Craigslist Cars By Owner
Presidential debate replay: Harris puts Trump on defensive over Jan. 6, race relations, abortion
4500 Divided By 50
Best Eyebrow Salons Near Me
autotronic 834P - FUHR Schlösser und Beschläge
Rubrating San Diego
Bridgeport Police Blotter Today
Craigslist Chapel Hill Rentals
Lubbock Tx Craigslist
Aabb Twits
Mythical Escapee Of Crete
Does Cvs Sell Heavy Whipping Cream
Harry Potter Fanfiction Screw The Magical World
Corinna Kopf Mega Link
Odawa Hypixel
Novant I Learn
Ballistic Unblocked Google Sites
R&L Carriers - Company Information - Review & History
Isabela Merced Leak
Staples Ups Drop Off
When His Eyes Opened Chapter 3096
Algebra Calculator Mathway
Tripadvisor Road Trip Forum
Accuweather Mold Count
Wat is de gezondste Doodle?
Vegan Love Stories: This Couple’s Goldendoodle Was the Ringbearer for a Stunning Desert-Inspired Wedding
Tex-A-Lina Barbecue Co. Denver Reviews
Alan Ilagan
What Is Opm1 Treas 310 Deposit
Biometrics Technician - On Call - Austin, Texas, United States
100+ Thankful Thursday Positive Quotes To Uplift Your Heart
50 Thankful Thursday Quotes That Will Boost Your Mood
A Boater Has Arrived On Lake Mnemosyne
Carlota_Sco
Craigslist Free Stuff San Gabriel Valley
Tyrone's Unblocked Basketball Stars
Thankathon
Lucy Letby was convicted of killing seven British babies. A judge has a warning for those who think she's innocent
Trajector Medical Bbb Rating
Anonib Au
Chevy Turbo 400 Transmission For Sale Craigslist
Merrilees Hardware Milan Indiana
Creamsickler
Usataxfree 2019
Ohio Licensing Lookup
Ice Cream Cake Weed Strain Allbud
the Okinawan diet series: the bento (part 1) - bring joy
Best 25 Paleo Bread Recipes - Paleo Gluten Free
Nearest Bevmo To Me
Lufthansa LH760 (DLH760) von Frankfurt nach Delhi
Oscillates Like A Ship
Jerk 76 Jamaican Restaurant Milwaukee Photos
Mercedes Benz klasa G dostępny MB Motors
Ogłoszenia - Sprzedam, kupię na OLX.pl
The best Stellaris mods
Stellaris: Dimensional Horror Guide - Gamer Of Passion
Contra Costa County Craigslist
Tba Mock Trial
Woensdagochtendwensen, citaten en bijschriften voor Instagram
80 Woensdag Motiverende Quotes voor op het Werk
Kinoko Mini Project
Lle Cellulitis Icd 10
Hypebeast Muckrack
Mcdonald's Closest To Me
Destep: 10 tips voor de scherpste destep-analyse ooit!
DESTEP-Analyse: Hoe Moet Dat? [Uitleg & Voorbeelden] | Bedrijvenconsultant
Mazda 6 GG/GG1; GY/GY1 2.3 MPS Test : MPSDriver
Technische Daten - Mazda6GY1
Livvy Fune
Odawa Hypixel
Sissy Hypno Gif
Amybeth Terry
Chathuram Full Movie Watch Online Free
Jamie Tarsis
A Thousand Sons – A Horus Heresy Novel – Review
A Thousand Sons (The Horus Heresy, #12)
B.k. Miller Chitterlings
Darrell Brooks Trial Live Today
Columbia County Jail View Lake City Florida
Watching My Step Jab
O'reilly's Covington Tennessee
Dh Marauder Build
Arlene Grayson And Brittany Murphy
Define Percosivism
Phoebe A Psychologist Conducts A Study
Devotion Showtimes Near Maya Cinemas Delano
Latest Posts
Article information

Author: Frankie Dare

Last Updated:

Views: 6171

Rating: 4.2 / 5 (73 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Frankie Dare

Birthday: 2000-01-27

Address: Suite 313 45115 Caridad Freeway, Port Barabaraville, MS 66713

Phone: +3769542039359

Job: Sales Manager

Hobby: Baton twirling, Stand-up comedy, Leather crafting, Rugby, tabletop games, Jigsaw puzzles, Air sports

Introduction: My name is Frankie Dare, I am a funny, beautiful, proud, fair, pleasant, cheerful, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.